柔性電路板上游原料吃緊,大廠鎮定應對
在考慮配電網(PDN)阻抗與同時開關噪聲(SSN)和電磁兼容性(EMC)的關系時,了解去耦合的影響至關重要。如果一個PCB的功率完整性或去耦合特性較差,例如高PDN阻抗,就會產生SSN和EMC問題。本文將通過實際案例,來證實柔性電路板的PDN阻抗、SSN和EMC之間的關系。
分析和結果
測試的原型為下面兩個版本:一個由晶體振蕩器提供外部50MHz參考的FPGA;三個主要接口:350MHz時鐘速率的DDR2 SDRAM、150MHz的ADC數據總線和100MHz的以太網。所有這些元器件都由1.8V降壓轉換器供電。通過表1中列出的測試案例,可以了解去耦合(包括PCB疊層和電容器)對SSN和EMC的影響。
在測試案例1中,原型PCB包括四個信號層和一個接地層,有16個0.1μF去耦合電容器連接到柔性電路板上FPGA的+1.8V電源引腳。在測試案例2中,原型柔性電路包括四個信號層和三個接地層,有25個0.1μF去耦合電容器連接到PCB 上FPGA的+1.8V電源引腳。
.jpg)
由圖1的PDN阻抗曲線可以看出( 使用Mentor Graphic Hyperlynx軟件對布局后期的功率完整性進行分析),相比測試案例1,測試案例2的電力網有更好的去耦合條件,因而在寬帶范圍內有更低的阻抗。0.1μF的電容器在中低頻段(< 400MHz)會產生影響。另外,接地層的平面電容在頻率高于400MHz時會產生影響。與測試案例1相比, 測試案例2有更多的去耦合電容器和接地層,因而具有更低的PDN阻抗。
.jpg)
然后,對兩個測試案例中頻率跨越30MHz至1000MHz時+1.8V(使用頻譜分析儀通過交流耦合探測)的功率頻譜進行比較。參見圖2b所示的測試案例2的頻譜,所觀察到的雜散主要是由晶體振蕩器(50MHz基頻)、DDR2 SDRAM (350MHz基頻)、ADC數據總線(150MHz基頻)和以太網(100MHz基頻)的諧波造成的。在圖2a所示的測試案例1中,由于去耦合性能較差,頻譜上出現了雜散,其功率達到最高。
PDN阻抗和晶體振蕩器瞬態電流之間的相互作用, 加上在特定頻率上同時開關或切換的IC輸出緩沖器(即SSN),共同產生了電網噪聲。通過改善去耦合降低功率阻抗,SSN和頻率雜散便能得到抑制。
.jpg)
通過在3米的電波暗室進行輻射發射(RE)測試可以比較兩種測試案例的原型之間的噪聲性能。測試案例2顯示出比測試案例1更好的RE或EMC性能,測試案例2中有更多的接地層,這不僅能改善去耦合或PDN阻抗,還為沿柔性電路板跡線傳輸的所有信號提供了恰當的返回路徑,從而進一步降低了輻射發射。
.jpg)
實際測試證實了去耦合對SSN和EMC的確會產生影響。因此,PDN和PCB疊層必須采用嚴格的方式執行, 以確保原型具有出色的質量、穩健性和功能。
ps:部分圖片來源于網絡,如有侵權,請聯系我們刪除
推薦深聯新聞
- 深聯電路榮膺2024年度“綠色制造與環保優秀企業”稱號
- 珠海深聯招聘專場,它來啦!
- 電池 FPC:電子設備供電連接的柔性基石
- 當 PCB 廠遇上 AI:是挑戰,還是開啟 “智能電路” 新賽道的鑰匙?
- 解碼線路板廠精密工藝:如何將基板雕琢成電子設備 “心臟”?
- 探秘汽車智能座艙線路板:復雜電路如何適配多變需求?
- 5G 時代,HDI 面臨哪些關鍵挑戰與發展機遇?
- 手機無線充軟板,如何為便捷充電 “搭橋鋪路”?
- 汽車激光雷達線路板為何需要耐極端溫度?普通 PCB 為何無法替代?
- PI 基材為何仍是柔性電路板的主流選擇??



總共 - 條評論【我要評論】